Nova Scotia Examination

Mathematics 10

Formula Booklet

	MEASUREMENT		
	Common Imperial	Imperial and SI	SI
Length	1 mile $=1760$ yards	1 mile $=1.609 \mathrm{~km}$	$1 \mathrm{~km}=1000 \mathrm{~m}$
	1 yard $=3$ feet	1 yard $=0.9144 \mathrm{~m}$	$1 \mathrm{~m}=100 \mathrm{~cm}$
	1 foot $=12$ inches	$1 \mathrm{foot}=30.48 \mathrm{~cm}$	$1 \mathrm{~cm}=10 \mathrm{~mm}$
		1 inch $=2.54 \mathrm{~cm}$	
Common Abbreviations	mile \leftrightarrow mi.		kilometre $\leftrightarrow \mathrm{km}$
	yard \leftrightarrow yd.		metre $\leftrightarrow \mathrm{m}$
	feet \leftrightarrow ' or ft.		centimetre $\leftrightarrow \mathrm{cm}$
	inch \leftrightarrow " or in.		millimetre $\leftrightarrow \mathrm{mm}$
	ton \leftrightarrow tn.		
	pound $\leftrightarrow \mathrm{lb}$.		
	ounce \leftrightarrow oz.		

TRIGONOMETRY

Reminder: Put your calculator in degree mode.

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2}
$$

MATH TILES LEGEND	LINEAR FUNCTIONS
	Linear equations The slope of a line $\begin{aligned} & y=m x+b \\ & A x+B y+C=0 \\ & y-y_{1}=m\left(x-x_{1}\right) \end{aligned}$ distance $=$ speed \times time

GEOMETRIC FIGURE		PERIMETER	AREA
Rectangle		$P=2 l+2 w$	$A=l w$

NOTE: Use the value of π programmed in your calculator rather than the approximation of 3.14 .

GEOMETRIC SOLID	SURFACE AREA	VOLUME
Cylinder	$S A=2 \pi r^{2}+2 \pi r h$	$V=($ area of base $) \times h$
Sphere	$S A=4 \pi r^{2}$	$V=\frac{4}{3} \pi r^{3}$
Cone	$S A=\pi r^{2}+\pi r S$	$V=\frac{1}{3} \times(\text { area of base }) \times h$
Right Square-Based Pyramid	$S A=2 b s+b^{2}$	$V=\frac{1}{3} \times(\text { area of base }) \times h$
General right prism	$S A=$ the sum of the area of all the faces	$V=($ area of base $) \times h$
General right pyramid	$S A=$ the sum of the area of all the faces	$V=\frac{1}{3} \times(\text { area of base }) \times h$

NOTE: Use the value of π programmed in your calculator rather than the approximation of 3.14.

